Cell death of spinal motoneurons in the chick embryo following deafferentation: rescue effects of tissue extracts, soluble proteins, and neurotrophic agents.

نویسندگان

  • Q W Yin
  • J Johnson
  • D Prevette
  • R W Oppenheim
چکیده

In the absence of descending spinal and supraspinal afferent inputs, neurons in the developing lumbar spinal cord of the chick embryo undergo regressive changes including cellular atrophy and degeneration between embryonic days 10 and 16. There are significant decreases in the number of motoneurons, interneurons, and sensory (dorsal root ganglion) neurons. Although there are several possible explanations for how afferents might regulate the maintenance of neuronal viability, we have focused attention on the putative role of neurotrophic agents in these events. Previous studies have shown that specific tissue extracts (e.g., muscle, brain), soluble proteins, growth factors, and trophic agents can promote the in vitro and in vivo survival of avian motoneurons during the period of natural cell death (embryonic days 6-10). Several of these agents were also effective following deafferentation. These included brain extract (BEX), muscle extract (MEX), conditioned medium from astrocyte cultures (ACM), as well as the following neurotrophic agents: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), S-100, insulin-like growth factor-I (IGF-I), ciliary neurotrophic factor (CNTF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and leukemia inhibitory factor (CDF/LIF). Both transforming growth factor-beta (TGF-beta) and acidic fibroblast growth factor (aFGF) were ineffective. Although considerable more work is needed to determine which (and how) specific CNS-derived trophic agents regulate motoneuron survival, the present results are consistent with the notion that neurotrophic agents released from or modulated by synaptic inputs to target neurons promote neuronal differentiation and survival in the CNS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression of trkB and p75 and the role of BDNF in the developing neuromuscular system of the chick embryo.

The neurotrophin, brain-derived neurotrophic factor, prevents motoneuron cell death during the normal development of the chick embryo. Brain-derived neurotrophic factor is a ligand for the low-affinity NGF receptor, p75, and for the high-affinity neurotrophin receptor, trkB. If motoneurons respond directly to brain-derived neurotrophic factor then they must possess at least one, and possibly bo...

متن کامل

بررسی تغییرات فاکتور نروتروفیکی BDNF و گیرنده‌های آن (P75, TrK-B) پس از قطع عصب سیاتیک در نوزاد موش صحرایی

  Background & Objective : As apoptotic cell death plays an important role in natural development and many pathologic conditions such as cancer and neurodegenerative diseases, understanding of its molecular mechanisms can be useful in designing new therapeutic strategies. In present study following induction of apoptosis in spinal motoneurons, expression of neurotrophic factor BDNF, and its rec...

متن کامل

The regulation of motoneuron survival and differentiation by putative muscle-derived neurotrophic agents: neuromuscular activity and innervation.

The chronic blockade of neuromuscular activity is known to promote the survival of developing motoneurons in vivo in the chick, mouse and rat embryo. Increased survival in this situation may reflect an activity-dependent mechanism for the regulation of trophic factor production by target cells. To test this notion, we have examined motoneuron survival in vivo and choline acetyltransferase (ChAT...

متن کامل

اثر حفاظت عصبی اریتروپویتین بر نورون‌های حرکتی نخاعی به دنبال آکسوتومی در نوزاد موش صحرایی

Background and Objective: Because of the critical role of cell death in the pathology of neurodegenerative diseases, its prevention is regarded as one of the most salient ends in neuroprotective strategies. Concerning the bulk of reports about the putative neuroprotective effects of erythropoietin (Epo), in the present study following axotomy, the effects of different doses of Epo  on spinal mo...

متن کامل

Hepatocyte growth factor/scatter factor is a neurotrophic survival factor for lumbar but not for other somatic motoneurons in the chick embryo.

Hepatocyte growth factor/scatter factor (HGF/SF) is expressed in the developing limb muscles of the chick embryo during the period of spinal motoneuron (MN) programmed cell death, and its receptor c-met is expressed in lumbar MNs during this same period. Although cultured motoneurons from brachial, thoracic, and lumbar segments are all rescued from cell death by chick embryo muscle extract (CMX...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 12  شماره 

صفحات  -

تاریخ انتشار 1994